Billions of dollars to map billions of neurons

A lot of money is being spent right now to ‘map the human brain’. In the last month, both the European Commission and U.S. president Barack Obama have pledged to give billions of dollars to fund two separate projects geared towards creating a working model of the human brain, all 100 billion neurons and 100,000 billion synapses.

The first, the Human Brain Project, is being spearheaded by Prof Henry Markram of École Polytechnique Fédérale de Lausanne. Together, with collaborators from 86 other European institutions, they aim to simulate the workings of the human brain using a giant super computer.

To achieve this, they will work to compile information about the activity of tons of individual neurons and neuronal circuits throughout the brain in a massive database. They then hope to integrate the biological actions of these neurons to create theoretical maps of different subsystems, and eventually, through the magic of computer simulation, a working model of the entire brain.

The second piece of chocolate

Imagine you have a piece of chocolate. Unwrap it, place it on your tongue. Savor its decadence as it melts in your mouth; relish the bitter and sweet coating your taste buds; indulge in its creamy texture. As the chocolate dissolves, signals are sent throughout your body. Chemicals are released, reinforcing its rewarding properties and preparing your body for the rush of sugar it is about to receive. You swallow. Immediately you want another piece.

The pleasure of eating is one of our most natural joys, be it savoring a perfectly cooked steak or delighting in that melt-in-your-mouth chocolate. But with the rise of obesity and related maladies – particularly cardiovascular disease, hypertension and type-II diabetes – such simple pleasures have been perverted, pathologized by experts and classed as a source of harm. With nearly 25% of English adults qualifying as obese, and with ensuing costs to the NHS reaching £5.1 billion each year, the UK is facing a self-induced public health pandemic. But how has this happened? And why can’t we all just put down that second piece of chocolate?

A Thanksgiving ode to tryptophan

My favorite holiday is on Thursday. And while I can't be at home in the States to celebrate, being an ex-pat at Thanksgiving does have its perks, as I get to attend multiple alternate feasts over the weekend. That means twice the stuffing, twice the cranberries, twice the turkey, twice the tryptophan.

Yes, tryptophan. That infamous amino acid we use to justify dozing off during our aunt's vacation slideshow after the big meal. Tryptophan is an essential amino acid, a protein precursor that the body uses to build various chemical structures. This includes serotonin, one of the primary neurotransmitters in the brain that is involved in everything from decision-making to depression. Serotonin is also a precursor to melatonin, which is important in sleep and wakefulness and is where the tryptophan-tiredness link comes in. However, despite the popular neuro-myth, turkey is actually no higher in tryptophan concentration than other types of poultry. Numerous different plant and animal proteins provide us with our daily doses of tryptophan, with sunflower seeds, egg whites and soy beans having some of the highest concentrations of the amino acid. In fact, turkey comes in at a measly 10th on the list of tryptophan sources.

More sexism in science

Following on my post the other week on Gender bias on both sides of scientific research, I want to draw attention to an incident that occurred at the annual Society for Neuroscience meeting last week in New Orleans. SFN is by far the largest neuroscience event every year, drawing over 30,000 attendees to come and revel in nerdy neuro madness for a week (think of it as a music festival for science geeks). With so many talks, poster sessions and symposiums, not to mention the sheer number of people, the conference can be overwhelming. But it is also overwhelmingly positive and exciting, allowing you the opportunity to check out new research, get new ideas, forge new relationships and collaborations, and, if you're lucky, even meet your academic super-star crush (I'm looking at you David Eagleman). 

However, one conference-goer decided that the quality of the researchers wasn't quite up to his standards. Dr. Dario Maestripieri of the University of Chicago complained on Facebook that the cosmetic caliber of the female attendees was lacking this year, stating "there are...an unusually high concentration of unattractive women [at the conference]. The super model types are completely absent." The comment, originally discovered and posted by Drug Monkey on his blog, went on to ask, "Are unattractive women particularly attracted to neuroscience? Are beautiful women particularly uninterested in the brain?", and considerately topped it off with, "No offense to anyone..."

SFN '12: Vulnerabilities for drug addiction

For anybody who's in New Orleans for SFN this week, come by room 273 at 1pm today to learn about vulnerabilities for drug addiction. It's an excellent nanosymposium set up by the fantastic Dr. Jenn Murray covering both human and preclincial studies into risk factors for addiction. The talks will include investigations into the classic predictive traits of impulsivity, anxiety and novelty-seeking, and they'll also delve into environmental risk factors for addiction, such as maternal care and environmental stimulation. 

I'll be presenting first (so be there at 1pm sharp!) on my work on endophenotypes for addiction. This involves studying both dependent drug users and their non-dependent biological siblings, who share 50% of their genes and the same environment growing up, but who never developed any sort of drug or alcohol abuse. I'll be looking specifically at cognitive control deficits and frontal cortex abnormalities in both of these groups compared to unrelated healthy control volunteers. There are some surprises in the results, so if you're at SFN come by at 1pm to find out what they are!

Thought-controlled robot arms: Welcome to the future!

It's the year 2012, and while we don't all have jet packs or flying cars, there have been some pretty incredible scientific discoveries as of late. Two amazing studies in particular have come out involving advances in spinal cord injury rehabilitation. The first helped paralyzed rats to walk again, and in the second a tetraplegic woman used a thought-controlled robotic arm to take her first self-directed sip of coffee in 15 years. 

The first study, published in Science by a Swiss research group, used rats to study physical rehabilitation in paraplegic animals. The researchers partially severed the spinal cords of a group of rats, paralyzing their hind-legs but crucially sparing some of the nerve tracts up to the brain. They then stimulated the spinal cords of these animals in the affected region with an electro-chemical current, hoping to excite the remaining nerve cells. The idea behind this is that if you can activate somatosensory signals (the sensations of touch and position of the body) in the affected limbs, you can help rewire the brain to potentially encourage firing of motor neurons as well.